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Reinforcement Learning for Optimal Primary
Frequency Control: A Lyapunov Approach
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Abstract—As more inverter-connected renewable resources are
integrated into the grid, frequency stability may degrade because
of the reduction in mechanical inertia and damping. A common
approach to mitigate this degradation in performance is to use
the power electronic interfaces of the renewable resources for
primary frequency control. Since inverter-connected resources
can realize almost arbitrary responses to frequency changes, they
are not limited to reproducing the linear droop behaviors. To
fully leverage their capabilities, reinforcement learning (RL) has
emerged as a popular method to design nonlinear controllers to
optimize a host of objective functions.

Because both inverter-connected resources and synchronous
generators would be a significant part of the grid in the near
and intermediate future, the learned controller of the former
should be stabilizing with respect to the nonlinear dynamics
of the latter. To overcome this challenge, we explicitly engineer
the structure of neural network-based controllers such that they
guarantee system stability by construction, through the use of a
Lyapunov function. A recurrent neural network architecture is
used to efficiently train the controllers. The resulting controllers
only use local information and outperform optimal linear droop
as well as other state-of-the-art learning approaches.

Index Terms—Power system dynamics, Primary frequency
control, Nonlinear Systems, Reinforcement learning

I. INTRODUCTION

Due to the shift from conventional generation to renewable
resources such as wind, solar, and storage, there has been
noticeable degradation of system frequency dynamics [1].
In the near and intermediate future, both inverter-connected
resources and synchronous generators would play significant
roles in the grid. Therefore, the inverters still need to “play
nice” with synchronous generators, where they need to respect
the dynamics of the generators and help maintain the stability
of the grid. A degradation in the frequency dynamics would
increase the risk of load shedding and blackouts, which in turn
limits the amount of renewable energy that can be integrated.

A widely adopted approach to use inverter-connected re-
sources to provide primary frequency regulation is to engi-
neer them to respond as conventional synchronous generators
through frequency droop controls. Because of the mechani-
cal characteristic of conventional generators, droop controls
are typically linear functions of frequency deviations (with
possible deadbands and saturation) [2]. Inverter-connected
resources can mimic this behavior by changing their active
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power setpoints subject to frequency deviations [3], [4]. How-
ever, as for the common performance metrics adopted in prac-
tice, including frequency deviations and control costs [5], [6],
linear controllers are not optimal [7]. Since inverters are solid
state electronic devices, they can implement almost arbitrary
control laws by quickly adjusting their power setpoints, subject
to some actuation limits [8], [9]. Then a natural question arises:
are there other control laws that still guarantee the stability of
a system with synchronous generators, but have more optimal
performance compared to linear droop response?

It turns out that designing optimal controllers that respect
the dynamics of power systems is not trivial. Power system
dynamics are governed by nonlinear swing equations and
thus even optimizing linear controllers is a difficult problem.
For nonlinear controllers, they need to be parameterized in
a tractable fashion for optimization. More importantly, the
controllers need to stabilize the frequency dynamics of the
grid, which introduces nonlinear constraints that are not easy
to work with algebraically.

A standard approach to overcome some of the above dif-
ficulties is to work with the linearized small signal model,
where controllers can be designed to guarantee asymptotic sta-
bility [5], [6]. However, stability becomes more crucial when
state deviations are large, where the nonlinear dynamics have
to be considered. When nonlinear dynamics are considered,
most approaches are restricted to tuning the slopes of the linear
droop controllers [4]. To obtain better performances, model
predictive control has also been used [7], [9], but they require
robust real-time communication and computation capabilities,
which is not yet available for much of the current system.

To break the unenviable position of not fully utilizing the
capabilities of inverters for frequency control, a number rein-
forcement learning (RL) approaches have been proposed [10]–
[12]. Specifically, (deep) neural networks are often used to
parameterize the controllers and RL is used to train them. A
number of algorithms, including deterministic policy gradient
algorithm, multi-Q-learning and actor-critic methods, have
been used in frequency regulation and other control problems.

The key challenge in using RL is to guarantee that learned
controllers are stabilizing, that is, frequencies in the system
would reach a stable equilibrium after disturbances in the
system. To this end, existing approaches typically use soft
penalties by adding a high cost when states leave prescribed
ranges [10], [13]. However, these approaches are ad hoc.
Stability should be treated as a hard constraint rather than
through penalties, which is especially important since training
can only be done on a limited number of samples while the
controller should be stabilizing over a set of points in the state
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space. Another challenge comes from the controller training
process. Generated trajectories are normally used to train the
neural network controllers, but the evolution of state vari-
ables over long time horizons makes direct back-propagation
inefficient. Approaches that use approximate value (or Q)
function assume that the states are in a stationary probability
distribution [14], which is generally not true during transients.
Lyapunov functions have been used as constraints [15], but
learning was not considered and controllers was manually
tuned.

This paper proposes a recurrent neural network (RNN)-
based RL framework to solve optimal primary frequency
control problem with a stability guarantee. We derive a simple
algebraic condition on the nonlinear controllers that guarantee
local exponential stability of the system. More precisely,
using Lyapunov theory, we show that the function from the
frequency deviation to the active power output implemented
by a controller needs to be monotonic and through the origin
at each bus. The controllers are decentralized (each only
using the frequency deviation at its own bus) and the stability
guarantee holds for most system parameters and topologies.

The monotonicity of the controller is realized through a
stacked-ReLU neural network which can be designed explic-
itly. In order to train the controllers efficiently, we design
a RNN framework where the time-coupled variables in the
power system form the cell component of the RNN. Sim-
ulation results show that the proposed method can learn a
static nonlinear controller that performs better than tradi-
tional linear droop control. Furthermore, we show that RL
without considering stability can lead to unstable controllers,
whereas our approach always maintains stability. Code and
data are available at https://github.com/Wenqi-Cui/RNN-RL-
Frequency-Lyapunov.

In summary, the main contributions of the paper are:
1) A Lyapunov function is integrated in the structural

properties of controllers, guaranteeing local asymptotic
stability over a large set of states. Namely, the controllers
need to be monotonic functions crossing the origin.

2) The controller is parameterized with a stacked-ReLU
neural network and a RNN-based RL framework is
proposed to efficiently train the controllers.

The remaining of this paper is organized as follows. Sec-
tion II introduces the system model and the optimal control
problem. Section III provides the main theorems governing
the structure of a stabilizing controller and illustrates how it
can be achieved via neural networks. Section IV shows how
they can be trained efficiently. Section V shows the simulation
results. Section VI concludes the paper.

II. MODEL AND PROBLEM FORMULATION

A. Power System Model

Consider a n-bus power system that can be modelled
as a connected graph (V, E). Specifically, buses are in-
dexed by i, j ∈ V := [n] := {1, . . . , n} and transmis-
sion lines are denoted by unordered pairs {i, j} ∈ E ⊂
{{i, j} | i, j ∈ V, i ̸= j}. Let states variables be phase angle

θ := (θi, i ∈ [n]) ∈ Rn and frequency deviation from the
nominal value ω := (ωi, i ∈ [n]) ∈ Rn.1

In this paper, we consider static local feedback controllers:
bus i measures its local frequency deviation ωi and applies
a time-invariant function to determine the control action ui.
Thus, the controller on the bus i is written as ui(ωi). The
control action changes the active power coming from inverter-
connected resources (e.g., solar PV and storages).

We assume the bus voltage magnitudes are 1 per unit and
the reactive power flows and injections are ignored. This is the
commonly used lossless power flow model, which is suitable
to primary frequency control of transmission systems with
small resistances and well-regulated voltages [16]. Let pm,i,
pe,i and pl,i be the mechanical power, electrical power, and
load at bus i, respectively. Denote Mi and Li as the inertia
constant and load damping coefficient at bus i. We assume
coherency between the internal (rotor) angle and terminal (bus)
voltage phase angles of the synchronous generators [5], [17]–
[19] (numerical validation are given in Appendix D). Then,
the frequency dynamics2 is given by the swing equation [2]:

θ̇i = ωi , (1a)
Miω̇i = pm,i − pl,i − pe,i − Liωi − pre,i . (1b)

Here, pre,i is the active power injection from inverter-
connected resources at bus i, which follows the setpoint given
by the control law ui(ωpll,i), i.e., pre,i = ui(ωpll,i), where
ωpll,i is the frequency deviation of bus i read from the phase-
locked-loop (PLL). The diagram of the frequency control loop
for the system (1) is shown in Fig. 1 [2], [20]. All of our
simulations use the 6th-order generator model with turbine-
governing system and we use dynamic model for inverter-
connected resources (blue blocks in Fig. 1). The speed droop
response with coefficient 1

Ri
for synchronous generator at bus

i is implemented through turbine-governing systems, see [2,
Chapter 11] for details.

As in most existing literature [21]–[24], we use the classical
2nd-order model for synchronous generators in theoretical
analysis. Under the classical 2nd-order model, the electrical
power is pe,i =

∑n
j=1 Bij sin(θi − θj) and the mechanical

power is pm,i = pg,i − 1
Ri

ωi with pg,i being the active power
setpoint of the generator. Let pi := pg,i − pl,i represent
the net power injection of bus i at the generator setpoint.
Let Di := 1

Ri
+ Li be the combined frequency response

coefficient from synchronous generators and load. Considering
the much faster time response of PLLs and inverters [25], we
assume that the measured frequency deviation ωpll,i accurately
approximate ωi and thus pre,i = ui(ωi). Then, the system
dynamics in (1b) becomes

Miω̇i = pi −Diωi − ui(ωi)−
n∑

j=1

Bij sin(θi − θj), (2)

where M := diag(Mi, i ∈ [n]) ∈ Rn×n are the generator
inertia constants, D := diag(Di, i ∈ [n]) ∈ Rn×n are the

1Throughout this paper, vectors are denoted in lower case bold and matrices
are denoted in upper case bold, while scalars are unbolded.

2The phase angle dynamics are utilized to derive the structure of stabilizing
controller. We do not make any changes to the rotor angle control on
synchronous generators.
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combined frequency response coefficients from synchronous
generators and frequency sensitive load, p := (pi, i ∈ [n]) ∈
Rn are the net power injections, B := [Bij ] ∈ Rn×n is the
susceptance matrix with Bij = 0, ∀{i, j} /∈ E , and u(ω) :=
(ui(ωi), i ∈ [n]) ∈ Rn.

Fig. 1. Block diagram of frequency control loop [2]. The blue blocks
constitute the dynamics of the system. High-order models are used in
simulations and simplified models are used for analysis.

B. Optimization Problem Formulation

As mentioned above, we would like to design control
functions ui(ωi)’s that can improve frequency deviation with a
moderate control cost. Therefore, we consider two costs in the
objective function of the optimal primary frequency control
problem: the cost on frequency deviations and the cost of
controllers [6], [7], [26], [27]. For a time horizon of length
T , a reasonable cost on frequency deviation is represented
by the infinity norm of ωi(t) over the time horizon from
0 to T , i.e., ∥ωi∥∞ := sup0≤t≤T |ωi(t)|, which quantifies
the maximum frequency deviation during the time horizon.
The cost on control actions is a Lipschitz-continuous function
written as Ci(ui) for bus i = 1, · · · , n. For example, for a
battery, we can set C to reflect its operating (i.e., degradation
and energy) cost as in [28], [29]. The optimization problem
is:

min
u

n∑
i=1

(∥ωi∥∞ + γCi(ui)) (3a)

s.t. θ̇i = ωi (3b)

Miω̇i = pi−Diωi−ui(ωi)−
n∑

j=1

Bij sin(θi−θj) (3c)

ui ≤ ui(ωi) ≤ ui (3d)
ui(ωi) is stabilizing. (3e)

Here, γ in (3a) is a coefficient that trades off the cost of action
with respect to frequency deviation. In a more general problem
setting, distinct weights γi’s can be assigned to individual
control actions to achieve a desirable frequency performance
at an acceptable level of control action [23]. In practice,
the power inputs from inverter-based resources are always
bounded by saturation. Hence, the lower and upper bounds
for the control action at bus i are included as ui and ui,
respectively, in (3d). The special case where ui = ui = 0 can
be used to characterize a bus i with no controllable resources.

Last but not least, we include the requirement that ui(ωi)’s
stabilize the system (1) as a hard constraint in (3e).

Fig. 2. Reinforcement learning for the frequency control problem

C. Reinforcement Learning for Optimal Frequency Control

In (3), we are optimizing the function u(·), which is an
infinite dimensional problem. To parameterize and find a good
controller, reinforcement learning (RL) has emerged as an
attractive alternative, where controllers are parameterized by
neural networks. Thus, we parameterize each of the controllers
ui(ωi) as a neural network with weight φi, sometimes written
as uφi

(ωi). Then, RL trains neural networks by updating φi’s
to minimize the loss given by the objective function in (3a).

The major challenge for RL comes from the hard constraint
on the stability of the system. Although we can add a high
penalty to the large magnitude of ωi, such a penalty does not
guarantee that the stability constraints are always satisfied.
In fact, learned controllers that lead to reasonably looking
trajectories in training may destabilize the system during test-
ing. To overcome this challenge, we directly use the physical
model (1) to derive the structure of the stabilizing controller
based on Lyapunov stability theory. As illustrated in Fig. 2(b)
and discussed in Section III, stability can be guaranteed by
enforcing a structure on the controllers uφi(ωi)’s.

To use RL, we need to discretize the system dynamics in
(1). The weights φi’s impact system behaviors across all of the
time steps, which makes direct back propagation inefficient.
Thus, we use the state transition dynamics to create a RNN
framework to increase training efficiency, as illustrated in
Fig. 2(c). Details are elaborated in Section IV.

III. STRUCTURAL PROPERTIES OF THE CONTROLLER

To constrain the search space in (3) to the set of stabilizing
controllers, we derive structural properties that the controllers
should satisfy from Lyapunov stability theory. More precisely,
by finding an appropriate Lyapunov function, we show that,
if the output of each controller is monotonically increasing
with respect to the frequency deviation, then the system has
a unique equilibrium that is locally exponentially stable. In
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addition, we directly engineer this monotonicity feature into
neural networks via properly designed weights and biases.
These weights and biases are then trained to optimize the
objective function in (3a).

A. Uniqueness of the Equilibrium

Since the frequency dynamics of the system in (1b) depends
only on the phase angle differences, to characterize the equi-
librium of the dynamics (1), we make the following change
of coordinates:

δi := θi −
1

n

n∑
j=1

θj ,

where δ := (δi, i ∈ [n]) ∈ Rn can be understood as the center-
of-inertia coordinates [16], [30]. Then, the system dynamics
in (1) can be written as

δ̇i = ωi −
1

n

n∑
j=1

ωj , (4a)

Miω̇i = pi −Diωi − ui(ωi)−
n∑

j=1

Bij sin(δi − δj) . (4b)

Under an arbitrary control law ui(ωi), there may not exist
a well-defined equilibrium point which the system will settle
into. In the next lemma, we show that an unique equilibrium
exists if the controllers satisfy a certain structure property.

Lemma 1 (Unique equilibrium). Suppose the function ui(ωi)
is a monotonically increasing function of the local frequency
deviation ωi. Suppose the angles at the equilibrium satisfy
|δ∗i − δ∗j | ∈ [0, π/2) for all i connected to j. Then there exists
an unique equilibrium point (δ∗,1ω∗) described by

0 = pi −Diω
∗ − ui(ω

∗)−
n∑

j=1

Bij sin(δ
∗
i − δ∗j ) , (5a)

n∑
i=1

pi =

n∑
i=1

ui(ω
∗) + ω∗

n∑
i=1

Di , (5b)

if the power flow equations (5a) are feasible, where 1 is a
vector of all 1’s with an appropriate dimension.

Proof. First of all, in steady state, (4) yields

0 = ω∗
i −

1

n

n∑
j=1

ω∗
j , (6a)

0 = pi −Diω
∗
i − ui(ω

∗
i )−

n∑
j=1

Bij sin(δ
∗
i − δ∗j ) . (6b)

Clearly, (6a) implies that the frequency deviation at each bus
synchronizes to the same solution that ω∗

i = ω∗, and we have
the desired equations in (5a). Since the system is lossless and
Bij = Bji, the net power flow,

∑n
i=1

∑n
j=1 Bij sin(δ

∗
i − δ∗j ),

is zero. Using this fact and by summing (5a), we get (5b).
Next, we show the uniqueness of ω∗ by contradiction.

Suppose that both ω∗ and ω̂ satisfy (5b), where ω∗ ̸= ω̂.
Then,

n∑
i=1

ui(ω
∗) + ω∗

n∑
i=1

Di =
n∑

i=1

ui(ω̂) + ω̂
n∑

i=1

Di ,

which yields

n∑
i=1

ui(ω
∗)− ui(ω̂)

ω∗ − ω̂
= −

n∑
i=1

Di < 0 . (7)

However, if ui(ωi) is monotonically increasing, the left hand
side of the equality in (7) must be nonnegative, which is a
contradiction. The uniqueness of δ∗ follows from the same
argument as in [31, Lemma 1].

Note that the angles δ are constrained to be in the region
denoted by Θ := {δ||δi − δj | ∈ [0, π/2),∀{i, j} ∈ E}, which
is sufficiently large to include almost all practical scenarios
and is a common assumption in literature [16], [30].

B. Lyapunov Stability Analysis

In this subsection, we further show that the equilibrium
point (δ∗,ω∗) described by (5) is locally exponentially stable
if the controllers are monotone. The next theorem is the main
result of the paper.

Theorem 1 (Local exponential stability). If the control
output ui(ωi) is a monotonically increasing function of the
local frequency deviation ωi, then the equilibrium point
(δ∗,1ω∗) described by (5) is locally exponentially stable.
In particular, the region of attraction include the set D :=
{(δ,ω) ∈ Rn × Rn | |δi − δj | ∈ [0, π/2) for i, j connected}.

The qualifier “local” in Theorem 1 is necessary since we
need to assume that the trajectories start within the region of
attraction. We note that this is far less restrictive than standard
local convergence results in nonlinear systems, where the
region of attraction is confined to be close to the equilibrium
point [32]. The region of attraction in Theorem 1 is quite large
and include most operating points of interest.

Theorem 1 gives structural properties3 for controllers that
guarantee exponential stability that does not depend on system
parameter and topologies. Therefore, the optimal performance
comes from training on a particular system, but the stability
guarantees do not. This robustness to uncertainties is a key
advantage of constraining the structure of networks compared
to purely model-free RL approaches. The design of neural
networks is given in the next section (Section III-C) and the
rest of this section outlines the proof of Theorem 1.

From Lyapunov stability theory, if there exists a Lyapunov
function V (δ,ω) such that V̇ (δ,ω) ≤ −cV (δ,ω) for a
constant c > 0, then the system is exponentially stable [32].
Therefore, we prove Theorem 1 by constructing a qualified
Lyapunov function and showing that such a constant c exist.
Inspired by [30], we consider the following Lyapunov function
candidate:

V (δ,ω) =
1

2

n∑
i=1

Mi(ωi − ω∗)2 +Wp(δ) + ϵWc(δ,ω) (8)

3These are sometimes called extended class κ functions
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with

Wp(δ) :=−
1

2

n∑
i=1

n∑
j=1

Bij

(
cos(δij)− cos(δ∗ij)

)
−

n∑
i=1

n∑
j=1

Bij sin(δ
∗
ij)(δi − δ∗i ) ,

Wc(δ,ω) :=
n∑

i=1

n∑
j=1

Bij

(
sin(δij)− sin(δ∗ij)

)
Mi(ωi − ω∗) ,

where δij := δi − δj and ϵ > 0 is a tunable parameter
that should be set small enough. The physical intuition for
the Lyapunov function can be found in [30], [33]. Strictly
speaking, this function is not a “true” Lyapunov function since
it is not bounded below. The following lemma proves that
V (δ,ω) is a well-defined Lyapunov function on the domain D,
which suffices to show that trajectories starting in D converge
to the equilibrium. Then Lemma 3 derives the time derivative
V̇ (δ,ω) and Lemma 4 shows there exists a constant c > 0
such that V̇ (δ,ω) ≤ −cV (δ,ω).

Lemma 2 (Bounds on Lyapunov function). ∀(δ,ω)∈D, the
Lyapunov function V (δ,ω) in (8) satisfies

V (δ,ω) ≥ α1(∥δ − δ∗∥22 + ∥ω − ω∗∥22) ,
V (δ,ω) ≤ α2(∥δ − δ∗∥22 + ∥ω − ω∗∥22) ,

for some constants α1 > 0 and α2 > 0.

The proof is given in Appendix A. It follows directly from
Lemma 2 that V (δ∗,ω∗) = 0 and V (δ,ω) > 0,∀(δ,ω) ∈
D \ (δ∗,ω∗). To show V (δ,ω) is a Lyapunov function on D,
we need to show V̇ (δ,ω) decreases in D.

Lemma 3 (Time derivative). The time derivative of V (δ,ω)
defined in (8) is given by

V̇ (δ,ω) =−
[
pe(δ)−pe(δ

∗)
ω−ω∗

]T
Q(δ)

[
pe(δ)−pe(δ

∗)
ω−ω∗

]
(9)

− [ω−ω∗+ϵ (pe(δ)−pe(δ
∗))]

T
(u(ω)− u(ω∗))

with

Q(δ) :=

 ϵI
ϵ

2
D

ϵ

2
D D − ϵ

2
(H(δ)M +MH(δ))

 , (10)

which is positive definite for ϵ small enough, pe(δ) :=(
pe,i(δ) :=

∑n
j=1 Bij sin(δij), i ∈ [n]

)
∈ Rn and H(δ) =

∇pe(δ) := [Hij ] ∈ Rn×n such that

Hij :=


−Bij cos(δij) if i ̸= j

n∑
j′=1,j′ ̸=i

Bij′ cos(δij′) if i = j
, ∀i, j ∈ [n] .

(11)

The proof is given in Appendix B. The cross
term [ω − ω∗ + ϵ (pe(δ)− pe(δ

∗))]
T
(u(ω)− u(ω∗))

generally complicates the analysis of V̇ (δ,ω). But when
ui(ωi) is monotonically increasing with respect to ωi,
(ui(ωi)− ui(ω

∗)) is the same sign with (ωi − ω∗) and
leads to nonnegative cross terms for small ϵ, implying that

V̇ (δ,ω) < 0, ∀(δ,ω) ∈ D \ (δ∗,ω∗) and thus the system is
locally asymptotically stable at the equilibrium point (δ∗,ω∗).
In the next lemma, we further show local exponential stability
of the equilibrium.

Lemma 4 (Bounds on the time derivative). If ui(ωi) is
monotonically increasing with respect to ωi, then there exists
a constant c > 0 such that V̇ (δ,ω) ≤ −cV (δ,ω).

Proof. First, we show that the cross term related to ui(ωi) is
nonnegative for sufficiently small ϵ. Define

ki(ωi) :=


ui(ωi)− ui(ω

∗
i )

ωi − ω∗
i

if ωi ̸= ω∗
i

0 if ωi = ω∗
i

, ∀i ∈ [n] .

Then, K(ω) := diag(ki(ωi), i ∈ V) ∈ Rn×n ⪰ 0 if ui(ωi) is
monotonically increasing with respect to ωi. Hence,

[ω − ω∗ + ϵ (pe(δ)− pe(δ
∗))]

T
(u(ω)− u(ω∗))

= (ω − ω∗)
T
K(ω) (ω − ω∗)

+ ϵ (pe(δ)− pe(δ
∗))

T
K(ω) (ω − ω∗) ≥ 0

for small enough ϵ.
Then, V̇ (δ,ω) can be by bounded by the quadratic term

related to Q(δ) in (9) as follows:

V̇ (δ,ω) (12)

≤ −
[
pe(δ)−pe(δ

∗)
ω−ω∗

]T
Q(δ)

[
pe(δ)−pe(δ

∗)
ω−ω∗

]
(a)

≤ −λmin(Q(δ))
(
∥pe(δ)−pe(δ

∗)∥22 + ∥ω−ω∗∥22
)

(b)

≤ −λmin(Q(δ))
(
γ1∥δ−δ∗∥22 + ∥ω−ω∗∥22

)
≤ −λmin(Q(δ))min(1, γ1)

(
∥δ−δ∗∥22 + ∥ω−ω∗∥22

)
(c)

≤ −λmin(Q(δ))min(1, γ1)
1

α2
V (δ,ω)

≤ −cV (δ,ω) (13)

with

c :=

(
min

δ:|δi−δj |∈[0,π/2),∀{i,j}∈E
λmin(Q(δ))

)
min(1, γ1)

α2
> 0,

where (a) is given by the Rayleigh-Ritz theorem, (b) is by [31,
Lemma 4] with γ1 := minδ̃∈Θ λ2(H(δ̃))2, and (c) follows
from Lemma 2.

C. Design of Neural Network Controllers

In this paper, we parametrize the controllers uφi
(ωi) by

a single hidden layer neural network. We assume that the
processes such as automatic generation control (AGC) adjust
the power setpoint of generators to make the net power injec-
tion around zero, i.e.,

∑n
i=1 pi = 0. For controllers ui(ωi)’s

that provide primary frequency response, we set ui(0) = 0
so the controllers take no action when there is no frequency
deviation. By Theorem 1, we design the neural networks to
have the following structures such that the controller will be
locally exponentially stabilizing:

1) uφi
(ωi) is monotonically increasing;
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2) uφi
(ωi) = 0 for ωi = 0;

3) ui ≤ uφi(ωi) ≤ ui (saturation constraints).
The first two requirements are equivalent to designing a

monotonic increasing function through the origin. This is
constructed by decomposing the function into positive and
negative parts as fi(ωi) = f+

i (ωi) + f−
i (ωi), where f+

i (ωi)
is monotonic increasing for ωi > 0 and zero when ωi ≤ 0;
f−
i (ωi) is monotonic increasing for ωi < 0 and zero when
ωi ≥ 0. The saturation constraints can be satisfied by hard
thresholding the output of the neural network.

The function f+
i (ωi) and f−

i (ωi) are constructed using a
single-layer neural network designed by stacking the ReLU
function σ(x) = max(x, 0). Let m be the number of hidden
units. For f+

i (ωi), let qi = [q1i q2i · · · qmi ] be the weight
vector of bus i; bi = [b1i b2i · · · bmi ]⊺ be the corresponding
bias vector. For f−

i (ωi), let zi = [z1i z2i · · · zmi ] be
the weights vector and ci = [c1i c2i · · · cmi ]⊺ be the
bias vector. Denote 1 ∈ Rm as the all 1’s column vector.
The detailed construction of f+

i (ωi) and f−
i (ωi) is given in

Lemma 5.

Lemma 5. Let σ(x) = max(x, 0) be the ReLU function.
The stacked ReLU function constructed by (14) is monotonic
increasing for ωi > 0 and zero when ωi ≤ 0.

f+
i (ωi) = qiσ(1ωi + bi) (14a)

where
l∑

j=1

qji ≥ 0, ∀l = 1, 2, · · · ,m (14b)

b1i = 0, bli ≤ b
(l−1)
i , ∀l = 2, 3, · · · ,m (14c)

The stacked ReLU function constructed by (15) is monotonic
increasing for ωi < 0 and zero when ωi ≥ 0.

f−
i (ωi) = ziσ(−1ωi + ci) (15a)

where
l∑

j=1

zji ≤ 0, ∀l = 1, 2, · · · ,m (15b)

c1i = 0, cli ≤ c
(l−1)
i , ∀l = 2, 3, · · · ,m (15c)

Proof. Note that the ReLU function σ(x) is linear with x when
activated (x > 0) and equals to zero when deactivated (x ≤ 0),
we construct the monotonic increasing function f+

i (ωi) by
stacking the function gli(ωi) = qliσ(ωi + bli), as illustrated by
Fig. 3. Since b1i = 0 and bli ≤ b

(l−1)
i ,∀1 ≤ l ≤ m, gli(ωi) is

activated in sequence from g1i (ωi) to gmi (ωi) with the increase
of ωi. In this way, the stacked function is a piece-wise linear
function and the slope for each piece is

∑l
j=1 q

j
i . Monotonic

property can be satisfied as long as the slope of all the pieces
are positive, i.e.,

∑l
j=1 q

l
i ≥ 0,∀1 ≤ l ≤ m. Similarly, f−

i (ωi)
also construct by ReLU function activated for negative wi in
sequence corresponding to cli for l = 1, · · · ,m.

∑l
j=1 z

j
i ≤ 0

means that all the slope of the piece-wise linear function is
positive and therefore guarantees monotonicity.

Note that there still exists inequality constraints in (14)
and (15), which makes the training of the neural networks
cumbersome. We can reformulate the weights to get an equiv-
alent representation that is easier to deal with in training.
Define the non-negative vectors q̂i =

[
q̂1i · · · q̂mi

]
and

Fig. 3. Stacked ReLU neural network to formulate a monotonic increasing
function through the origin

b̂i =
[
b̂1i · · · b̂mi

]⊺
. Then, (14b) is satisfied if q1i = q̂1i ,

qli = q̂li − q̂
(l−1)
i for l = 2, · · · ,m. (14c) is satisfied if

b1i = 0, bli = −
∑l

j=2 b̂
j
i for l = 2, · · · ,m. Similarly, define

ẑi =
[
ẑ1i · · · ẑmi

]
≥ 0 and ĉi =

[
ĉ1i · · · ĉmi

]⊺ ≥ 0.
Then, (15b) is satisfied if z1i = −ẑ1i , zli = −ẑli + ẑ

(l−1)
i for

l = 2, · · · ,m. (15c) is satisfied if c1i = 0, cli = −
∑l

j=2 ĉ
l
i

for l = 2, · · · ,m. If the dead-band of the frequency deviation
within the range [−d, d] is required, it can be easily satisfied
by setting b2i = −d, q1i = 0 and c2i = −d, z1i = 0 in (14) and
(15).4

The next Theorem states the converse of Lemma 5, that is,
the constructions in (14) and (15) suffice to approximate all
functions of interest.

Theorem 2. Let r(x) be any continuous, Lipschitz and
bounded monotonic function through the origin with bounded
derivatives, mapping compact set X to R. For any ϵ > 0, there
exists a function f(x) = f+(x) + f−(x) constructed by (14)
and (15) such that |r(x)− f(x)| < ϵ when x ∈ X.

The proof is given in Appendix C. Note that f(x) is a
single-layer neural network. When approximating an arbitrary
function, the number of neurons and the height will depend on
ϵ. Since the controller in this paper is bounded, the stacked-
ReLU neural network with limited number of neurons is
sufficient for parameterization. The last step is to bound the
output of the neural networks, which can be done easily using
ReLU activation functions.

Lemma 6. The neural network controller ui(ωi) given below
is a monotonic increasing function through the origin and
bounded in [ui, ui] for all i = 1, · · · , N :

ui(ωi) =ui − σ(ui − f+
i (ωi)− f−

i (ωi))

+ σ(ui − f+
i (ωi)− f−

i (ωi))
(16)

The proof of this lemma is by inspection.

4A deadband is often enforced for generator droop control to reduce
mechanical stress. For inverters, we do not set mandatory dead-bands.
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IV. LEARNING CONTROL POLICIES USING RNNS

The structure of the controllers are decided by the construc-
tions in (14), (15) and (16). In this section we develop a RNN
based RL algorithm to learn their weights and biases.

A. Discretize Time System

To learn the controller and simulate the trajectories of
the system, we discretize the dynamics (1) with step size
∆t. We use k and K to represent the discrete time
and the total number of stages, respectively. The states
(θi, wi) at bus i evolves along the trajectory are rep-
resented as θi = (θi(0), θi(1), · · · , θi(K)) and ωi =
(ωi(0), ωi(1), · · · , ωi(K)) over K stages, with the control
sequence uφi = (uφi(ωi(0)), · · · , uφi(ωi(K))). The infinity
norm of the sequence of ωi(k) is then defined by ||ωi||∞ =
maxk=0,··· ,K |wi(k)|. The cost on controller is the quadratic
function of action The optimization problem is

min
φ

n∑
i=1

(||ωi||∞ + γCi(uφi)) (17a)

s.t. θi(k) = θi(k − 1) + ωi(k − 1)∆t (17b)

ωi(k) = −
∆t

Mi

|B|∑
j=1

Bij sin(θij(k − 1)) +
∆t

Mi
pm,i

+

(
1− Di∆t

Mi

)
ωi(k − 1)− ∆t

Mi
uφi

(ωi(k − 1))

(17c)
ui ≤ uφi

(ωi(k)) ≤ ui (17d)
ωi(k)uφi

(ωi(k)) ≥ 0 (17e)
uφi

(·) is increasing (17f)

and all equations hold for i = 1, . . . , n. The constraints (17e)
and (17f) guarantee exponentially stability.

Note that the optimization variable φ exists in all the
time steps in (17). A straightforward gradient-based training
approach is challenging since we need to calculate the gra-
dient all the way to the first time step for all time steps
k = 0, · · · ,K. To mitigate this challenge, we propose a RNN-
based framework that integrates the state transition dynamics
(17b) and (17c). This way, the gradient of the optimization
objective with respect to φ can be computed efficiently
through back-propagation.

B. RNN for control

RNN is a class of artificial neural networks where
connections between nodes form a directed graph along a
temporal sequence. This allows it to exhibit temporal dynamic
behavior. By defining the cell state as the time-coupled states
θi and ωi, the state transition dynamics of the power system
is integrated as illustrated in Fig. 4

Fig. 4. Structure of RNN for the frequency control problem

The operation of RNN is shown by the left side of Fig. 4.
The cell unit of RNN will remember its current state at the
stage k and pass it as an input to the next stage. Unfolding
the cell unit through time will give the right side of Fig. 4.
In this way, RNN can be utilized to deal with time-coupled
state variables. Specifically, the state (θi(k − 1), ωi(k − 1))
for all i = 1, · · · , n at the stage k − 1 is taken as an input
in the state transition function (17b) (17c) and thus the state
(θi(k), ωi(k)) for all i = 1, · · · , n at the stage k is obtained.
The control function uφi(ωi(k)) in the state transition function
is formatted through (16) to satisfy inequality constraints. The
output Oi(k) =

[
O1

i (k) O2
i (k)

]
at stage k is a vector with

two components computed by O1
i (k) = ωi(k) and O2

i (k) =
(uφi(ωi(k)))

2. The loss function is formulated to be equivalent
with the objective function (17a) as:

Loss =
N∑
i=1

max
k=0,··· ,K

|O1
i (k)|+ γ

1

K

K∑
k=1

O2
i (k) (18)

The trainable variables φ is specified in the neural network
controller (16) and updated by gradient descent through the
Loss function (18). The unfolded structure of RNN form a
directed graph along a temporal sequence where the gradi-
ent of Loss function can be efficiently computed by auto-
differentiation mechanisms [34].

C. Algorithm

The pseudo-code for our proposed method is given in
Algorithm 1. The variables to be trained are weights φ =
{q̂, b̂, ẑ, ĉ} for control network represented by (14)-(16) . The
i − th row of q̂ and ẑ are the vector q̂i and ẑi in (14) and
(15), respectively. The i-th column of b̂ and ĉ are the vector b̂i
and ĉi in (14) and (15), respectively. Training is implemented
in a batch updating style where the h-th batch initialized
with randomly generated initial states {θhi (0), ωh

i (0)} for all
i = 1, · · · , n. The evolution of states in K stages will be
computed through the structure of RNN as shown by Fig. 4.
Adam algorithm is adopted to update weights in each episode.

V. SIMULATION STUDIES

Case studies are conducted on the IEEE New England
10-machine 39-bus (NE39) power networks to illustrate the
effectiveness of the proposed method. To ensure that our
results apply in practice, simulations are conducted on the
system with 6th-order generator model as well as dynamic
models for inverter-connected resources [20], [35], [36].
Firstly, we show that the proposed Lyapunov-based approaches
for designing neural network controller can guarantee stability,
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Algorithm 1 Reinforcement Learning with RNN
Require: Learning rate α, batch size H , total time stages K,

number of episodes I , parameters in optimal frequency
control problem (17)

Input: The bound of θi and ωi to generate the initial states
Initialisation :Initial weights φ for control network

1: for episode = 1 to I do
2: Generate initial states θhi (0), ω

h
i (0) for the i-th bus in

the h-th batch, i = 1, · · · , n, h = 1, · · · , H
3: Reset the state of cells in each batch as the initial value

xh
i ← {θhi (0), ωh

i (0)}.
4: RNN cells compute through K stages to obtain the

output {Oh,i(0), Oh,i(1), · · · , Oh,i(K)}
5: Calculate total loss of all the batches

Loss = 1
H

∑H
h=1

∑N
i=1 maxk=0,··· ,K |O1

h,i(k)| +

γ 1
K

∑K
k=1 O

2
h,i(k)

6: Update weights in the neural network by passing Loss
to Adam optimizer: φ← φ− αAdam(Loss)

7: end for

while unconstrained neural networks may result in unstable
controllers. Then, we show that the proposed structure can
learn a nonlinear controller that performs better than other
controllers.

A. Practical Implementation of Inverter-based Controllers

In this subsection, we show how the controllers uφi
(ωi)’s

can be utilized in different types of inverter-connected re-
sources in practice using the Western Electricity Coordinating
Council (WECC) generic models as an example [36]. This
system has been widely used for studying system response
to electrical disturbances, including major disturbances such
as loss of generation or large step change of load [37], [38].
The generic model is shown in Figure. 5 and consists of three
modules:

1) The renewable energy generator/inverter model (Regc),
which has inputs of real (Ipcmd) and reactive (Iqcmd)
current command and outputs of real (Ip) and reactive
(Iq) current injection into the grid model.

2) The renewable energy electrical controls model (Reec),
which has inputs of real/reactive power setpoints
(pext/qext) that can be externally controlled. The outputs
are the real and reactive current command calculated
according to the pext/qext and the voltage vt.

3) Renewable energy plant controller (Repc) that deter-
mines active and reactive setpoints. The f/p (fre-
quency/active power output) block emulates active
power control, and v/q (voltage and reactive power
output) block emulates volt/var control at the plant level.

Our paper essentially updates the f/p control block (red
part in Fig. 5). Instead of using a linear droop controller,
we design nonlinear control law u(ωpll) to replace existing
linear f/p control law. The control of wind turbine generator
(WTG) and solar PV can be compared using this generic
model. For example, Fig. 6 shows the dynamic representation
of large-scale PV plants built based on modules in Fig. 5 [36].

The control law u(ωpll) obtained from the proposed method
serves as external command for the adjustment of active power
setpoint in the module of inverters for Solar PV. Similarly, the
control law u(ωpll) can also be used for WTG by replacing the
block of f/p droop control. Detailed dynamic representation
of WTG using the WECC generic blocks can be find in [36].

Fig. 5. Block diagram of WECC generic model [36]

Fig. 6. WECC generic model for PV [36]

B. Simulation Setting

We use TensorFlow 2.0 framework to build the reinforce-
ment learning environment and run the training process in
Google Colab with a single Nvidia Tesla P100 GPU with
16GB memory. ANDES (an open source package for power
system dynamic simulation) is utilized to simulate the dynamic
response from WECC generic model for solar PV and Type-4
wind turbine generation (WTG) as the renewable resources,
and 6th-order generator model with turbine-governing sys-
tems [36], [39]. We set 30% of active power generation from
PV or WTG and the remaining 70% comes from synchronous
generator. Parameters for the PV and WTG follow the default
values in ANDES [39]. For training the neural network con-
troller, the system is in the Kron reduced form [7], [40] and its
dynamics is represented by (1). The bound on action ui is gen-
erated to be uniformly distributed in [0.8pi, pi]. We generate
the trajectories by randomly picking at most three generators
to have a step load change uniformly distributed in [−1, 1] p.u.
We use a non-quadratic cost Ci(ui) =

∑T
t=1 |ui(t)| from [28]

for case studies. The cost coefficient γ = 0.002. The stepsize
between time states is set as ∆t = 0.01s and the total time
stages is K = 200.

Since the power output of both PV and WTG follow the
power setpoint accurately (numerical validation is provided
in Appendix E), the system dynamics with PV or WTG as
the renewables will be very similar. In the following part of
this section, we show the simulation results using PV as the
inverter-connected resources. We compare the performance of
the proposed RNN based structure where the neural network
controller is designed with and without the Lyapunov-based
approach, and the drop control with optimized linear coeffi-
cient. The parameter settings are as follows:
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1) RNN-Lyapunov: Neural network controller designed
based on Algorithm 1, which satisfies Theorem 1. The
episode number, batch size and the number of neurons
are 600, 600 and 20, respectively. Parameters of RNN
are updated using Adam with learning rate initializes at
0.05 and decays every 30 steps with a base of 0.7.

2) RNN-Wo-Lyapunov: Controllers are learned without im-
posing any structures and purely optimizes the reward
during training. The controllers are parametrized as
neural networks with two dense-layer and the activa-
tion function in the first layer is tanh. All the other
parameters are the same as RNN-Lyapunov.

3) Linear droop control: let ki be the droop coefficient for
bus i and the droop control policy is ui(ωi) = kiωi

for i = 1, . . . , n, thresholded to their upper and lower
bounds. The optimized droop coefficient is obtained by
solving (17) using fmincon function of Matlab.

4) PG-Monotone: This controller is to demonstrate the
performance improvements of using RNN during train-
ing. So here we impose the stacked-ReLU structure
and trained with REINFORCE Policy Gradient algo-
rithm [14]. It differs with 1) only in the training methods.
The neural networks for controller, the episode number,
batch number and optimizer are the same as RNN-
Lyapunov. The learning rate initializes at 0.01 and
decays every 30 steps with a base of 0.7. To encourage
exploration, a zero-mean Gaussian noise is added to the
control policy.

C. Necessity of Lyapunov-based Approach

Fig. 7. Average batch loss along episodes for neural network controller
designed with and without the Lyapunov-based approach. Both converges,
with the former converging much for quickly than the latter.

Theorem 1 ensures that the learned controller would be
locally exponentially stable, but it’s interesting to check the
performance of an unconstrained controller. Intuitively, an
unstable controller should lead to large costs since some
trajectories would be blowing up. Then maybe a controller
that minimizes the cost would also be stabilizing.

Fig. 7 shows the training loss between controllers learned
with and without the Lyapunov-based approach. Both losses
converge, with the Lyapunov-based controller having better
performances. However, when we implement the controllers,
the one without considering stability is unstable and leads
to very large state oscillations (Fig. 8b). In contrast, the

(a) Dynamics of ω (left) and δ (right) for RNN-Lyapunov

(b) Dynamics of ω (left) and δ (right) for RNN-Wo-Lyapunov

Fig. 8. Dynamics of angle δ and frequency deviation ω in 10 generator
buses corresponding to (a) the neural network controller designed with the
Lyapunov-based approach and (b) the neural network controller designed
without the Lyapunov-based approach. The two controllers exhibit qualita-
tively different behavior even though they both achieve finite training losses
in Fig. 7. The controller designed without the Lyapunov-based approach leads
to unstable trajectories of the system.

controller constrained by the Lyapunov condition shows good
performance (Fig. 8a). The reason for this dichotomy in
performance is that we can only check a finite number of
trajectories during training, and good training performance
does not in itself guarantee good generalization. Therefore,
explicitly constraining the controller structure is necessary.

D. Performance Comparisons

This subsection shows that the proposed method can learn a
static nonlinear controller that outperforms the optimal linear
droop controller and the RNN training technique is much
more efficient than using a standard policy gradient method.
Fig. 9 illustrates the control policy learnt from RNN-Lyapunov,
Policy Gradient and the linear droop control with optimized
droop coefficient for four generators. Compared with the
traditional droop control, the proposed stacked-ReLU neural
network learns a nonlinear controller with different shapes for
RNN-Lyapunov and PG-Monotone.

We first study the learned controllers and their performances
during a sudden change in load/generation. Suppose the load
at bus 29 experiences a step load increase of 3 p.u. occurring
at t = 0.5s. Figure 10 illustrates the dynamics of ω and
corresponding control action u under each of the controllers.
After the step load change, RNN-Lyapunov and linear droop
control achieve similar maximum frequency deviation, while
the control action of RNN-Lyapunov is much lower than
the other. PG-Monotone shows higher frequency deviations.
Therefore, the proposed RNN-Lyapunov approach has the
minimal cost. The computational time of the proposed RNN
based method is 1465.58s, while the computational time of
REINFORCE policy gradient takes 5050.12s. Therefore, the
proposed RNN based structure reduces computational time by
approximate 70.98% compared with the general RL structure.
The key reason for the better performance of RNN lies in the
efficient usage of the physical model. For the model-free RL
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Fig. 9. Examples of learned controller u corresponding to RNN-Lyapunov,
Linear droop control and Policy Gradient for generator buses 5 and 8. The
comparison shows that the proposed Stacked-ReLU neural network learns
nonlinear controllers in flexible shapes.

methods including REINFORCE policy gradient, it is well-
known that the neural network will easily get stuck in the
current weights based on the history trajectories [14]. This
makes PG controller learn much smaller range of u (as shown
in Fig. 9 ) since the training of neural network get stuck
in the current weights without updating further. Moreover, to
encourage the training of RL to explore some possibly better
actions, the control policies in REINFORCE policy gradient
are parameterized as Gaussian policies that add Gaussian
noises to the implemented actions. Then, the gradient descent
with respect to the weights in the neural network is calculated
from a Gaussian distribution instead of a deterministic control
law. This increases the computational burden and therefore
causes the significant increase in their computational time.

(a) Dynamics of ω (left) and u (right) for RNN-Lyapunov

(b) Dynamics of ω (left) and u (right) for linear droop control

(c) Dynamics of ω (left) and u (right) for controller obtained by PG-
Monotone

Fig. 10. Dynamics of the frequency deviation w and the control action
u in selected generator buses corresponding to (a) Lyapunov-guided neural
network controller learned with RNN. (b) Linear droop control. (c) Lyapunov-
guided neural network controller learned from Policy Gradient with Monotone
structure design. The proposed RNN controller has the smallest cost.

Next, we randomize the step load changes to simulate and
test the performance of the three methods under multiple dif-

ferent trajectories. We randomly select three generators to let
the step load change uniformly distributed in U [−∆p̄l,∆p̄l],
where ∆p̄l denotes the variation bound of the step load change.
The average loss corresponding to ∆p̄l = 0.2, 0.4, · · · , 1.4 p.u.
are illustrated in Fig. 11. Overall, the average loss in linear
droop control and PG-Monotone is approximately 12.63%
and 7.83% higher than RNN-Lyapunov trained with 600
trajectories, respectively. If reducing the number of training
trajectories to 300, the loss will be 3.36% higher than that
trained with 600 trajectories but still better than linear droop
control and PG-Monotone. Therefore, the proposed method
learn the nonlinear controller that leads to better average
control performance under different scenarios. Moreover, it is
generalizable to new scenarios even when there are not many
trajectories for training.

Fig. 11. Loss with different variation range of step load changes for RNN-
Lyapunov (with the number of training trajectories to be 600 and 300,
respectively), Linear droop controller and Policy Gradient. Compared with
Linear droop controller and PG-Monotone, RNN-Lyapunov (trajectory=600)
reduces the loss by approximately 12.63% and 7.83%, respectively.

VI. CONCLUSION

This paper investigates the optimal frequency control prob-
lem using reinforcement learning with stability guarantees.
From Lyapunov stability theory, We construct the controllers
to be monotonically increasing through the origin, and prove
they guarantee stability for all operating points in a region.
These controllers are trained using a RNN-based method that
allows for efficient back propagation through time. The learned
controllers are static piece-wise linear functions that do not
need real-time computation and is practical for implemen-
tation. Through simulations, we show that they outperform
optimal linear droop as well as purely unstructured controllers
trained via reinforcement learning. In particular, controllers
failing to consider stability constraints in learning may lead
to unstable trajectories of the state variables, while our pro-
posed controllers can achieve optimal performances in system
frequency responses that use small control efforts.

REFERENCES

[1] B. Kroposki, B. Johnson, Y. Zhang, V. Gevorgian, P. Denholm, B.-M.
Hodge, and B. Hannegan, “Achieving a 100% renewable grid: Operating
electric power systems with extremely high levels of variable renewable
energy,” IEEE Power and Energy Magazine, vol. 15, no. 2, pp. 61–73,
2017.

[2] P. Kundur, N. J. Balu, and M. G. Lauby, Power system stability and
control. McGraw-hill New York, 1994, vol. 7.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on October 10,2022 at 06:30:35 UTC from IEEE Xplore.  Restrictions apply. 



0885-8950 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2022.3176525, IEEE
Transactions on Power Systems

11

[3] B. K. Poolla, S. Bolognani, and F. Dorfler, “Optimal placement of
virtual inertia in power grids,” IEEE Transactions on Automatic Control,
vol. 62, no. 12, pp. 6209–6220, 2017.

[4] Z. Zhang, E. Du, F. Teng, N. Zhang, and C. Kang, “Modeling frequency
dynamics in unit commitment with a high share of renewable energy,”
IEEE Transactions on Power Systems, vol. 35, no. 6, pp. 4383–4395,
2020.

[5] C. Zhao, U. Topcu, N. Li, and S. Low, “Design and stability of load-
side primary frequency control in power systems,” IEEE Transactions
on Automatic Control, vol. 59, no. 5, pp. 1177–1189, 2014.

[6] E. Mallada, C. Zhao, and S. Low, “Optimal load-side control for
frequency regulation in smart grids,” IEEE Transactions on Automatic
Control, vol. 62, no. 12, pp. 6294–6309, 2017.

[7] A. Ademola-Idowu and B. Zhang, “Frequency stability using inverter
power control in low-inertia power systems,” IEEE Transactions on
Power Systems, vol. 36, no. 2, pp. 1628–1637, 2020.

[8] B. B. Johnson, S. V. Dhople, A. O. Hamadeh, and P. T. Krein,
“Synchronization of parallel single-phase inverters with virtual oscillator
control,” IEEE Transactions on Power Electronics, vol. 29, no. 11, pp.
6124–6138, 2013.

[9] O. Stanojev, U. Markovic, P. Aristidou, G. Hug, D. S. Callaway,
and E. Vrettos, “MPC-based fast frequency control of voltage source
converters in low-inertia power systems,” IEEE Transactions on Power
Systems, pp. 1–1, 2020.

[10] X. Chen, G. Qu, Y. Tang, S. Low, and N. Li, “Reinforcement learning
for decision-making and control in power systems: Tutorial, review, and
vision,” arXiv preprint arXiv:2102.01168, 2021.

[11] Z. Yan and Y. Xu, “Data-driven load frequency control for stochastic
power systems: A deep reinforcement learning method with continuous
action search,” IEEE Transactions on Power Systems, vol. 34, no. 2, pp.
1653–1656, 2018.

[12] G. Qu, A. Wierman, and N. Li, “Scalable reinforcement learning of
localized policies for multi-agent networked systems,” in Learning for
Dynamics and Control. PMLR, 2020, pp. 256–266.

[13] Q. Huang, R. Huang, W. Hao, J. Tan, R. Fan, and Z. Huang, “Adaptive
power system emergency control using deep reinforcement learning,”
IEEE Transactions on Smart Grid, vol. 11, no. 2, pp. 1171–1182, 2019.

[14] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[15] Y. Zhang and J. Cortés, “Distributed transient frequency control for
power networks with stability and performance guarantees,” Automatica,
vol. 105, pp. 274–285, 2019.

[16] P. W. Sauer, M. A. Pai, and J. H. Chow, Power system dynamics and
stability: with synchrophasor measurement and power system toolbox.
John Wiley & Sons, 2017.

[17] L. Guo, C. Zhao, and S. H. Low, “Graph laplacian spectrum and
primary frequency regulation,” in 2018 IEEE Conference on Decision
and Control (CDC). IEEE, 2018, pp. 158–165.

[18] C. Zhao, U. Topcu, N. Li, and S. Low, “Power system dynamics
as primal-dual algorithm for optimal load control,” arXiv preprint
arXiv:1305.0585, 2013.

[19] A. Delavari and I. Kamwa, “Sparse and resilient hierarchical direct
load control for primary frequency response improvement and inter-area
oscillations damping,” IEEE Transactions on Power Systems, vol. 33,
no. 5, pp. 5309–5318, 2018.

[20] J. H. Chow and K. W. Cheung, “A toolbox for power system dynamics
and control engineering education and research,” IEEE transactions on
Power Systems, vol. 7, no. 4, pp. 1559–1564, 1992.

[21] A. D. Domı́nguez-Garcı́a, “Models for impact assessment of wind-based
power generation on frequency control,” in Control and Optimization
Methods for Electric Smart Grids. Springer, 2012, pp. 149–165.

[22] B. Xu, Y. Shi, D. S. Kirschen, and B. Zhang, “Optimal battery partic-
ipation in frequency regulation markets,” IEEE Transactions on Power
Systems, vol. 33, no. 6, pp. 6715–6725, 2018.

[23] P. Hidalgo-Gonzalez, R. Henriquez-Auba, D. S. Callaway, and C. J.
Tomlin, “Frequency regulation using data-driven controllers in power
grids with variable inertia due to renewable energy,” in 2019 IEEE Power
Energy Society General Meeting (PESGM), 2019, pp. 1–5.

[24] Y. Jiang, E. Cohn, P. Vorobev, and E. Mallada, “Storage-based frequency
shaping control,” IEEE Transactions on Power Systems, vol. 36, no. 6,
pp. 5006–5019, 2021.

[25] V. Purba, B. B. Johnson, M. Rodriguez, S. Jafarpour, F. Bullo, and S. V.
Dhople, “Reduced-order aggregate model for parallel-connected single-
phase inverters,” IEEE Transactions on Energy Conversion, vol. 34,
no. 2, pp. 824–837, 2018.

[26] D. Tabas and B. Zhang, “Optimal l-infinity frequency control in micro-
grids considering actuator saturation,” arXiv:1910.03720, 2019.

[27] Y. Jiang, R. Pates, and E. Mallada, “Dynamic droop control in low-
inertia power systems,” IEEE Transactions on Automatic Control,
vol. 66, no. 8, pp. 3518–3533, 2020.

[28] Y. Shi, B. Xu, D. Wang, and B. Zhang, “Using battery storage for
peak shaving and frequency regulation: Joint optimization for superlinear
gains,” IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 2882–
2894, 2017.

[29] B. Xu, J. Zhao, T. Zheng, E. Litvinov, and D. S. Kirschen, “Factoring
the cycle aging cost of batteries participating in electricity markets,”
IEEE Transactions on Power Systems, vol. 33, no. 2, pp. 2248–2259,
2017.

[30] E. Weitenberg, Y. Jiang, C. Zhao, E. Mallada, C. De Persis, and
F. Dörfler, “Robust decentralized secondary frequency control in power
systems: Merits and tradeoffs,” IEEE Transactions on Automatic Con-
trol, vol. 64, no. 10, pp. 3967–3982, 2018.

[31] E. Weitenberg, C. De Persis, and N. Monshizadeh, “Exponential con-
vergence under distributed averaging integral frequency control,” Auto-
matica, vol. 98, pp. 103–113, 2018.

[32] S. Sastry, Nonlinear systems: analysis, stability, and control. Springer
Science & Business Media, 2013, vol. 10.

[33] A. Arapostathis, S. Sastry, and P. Varaiya, “Global analysis of swing
dynamics,” IEEE Transactions on Circuits and Systems, vol. 29, no. 10,
pp. 673–679, 1982.

[34] A. Griewank, “On automatic differentiation,” Mathematical Program-
ming: recent developments and applications, vol. 6, no. 6, pp. 83–107,
1989.

[35] A. Ortega and F. Milano, “Generalized model of vsc-based energy
storage systems for transient stability analysis,” IEEE transactions on
Power Systems, vol. 31, no. 5, pp. 3369–3380, 2015.

[36] E. Farantatos, “Model user guide for generic renewable energy system
models,” Technical Update 3002014083, EPRI, 2018.

[37] J. F. Hauer, W. A. Mittelstadt, K. E. Martin, J. W. Burns, H. Lee, J. W.
Pierre, and D. J. Trudnowski, “Use of the wecc wams in wide-area
probing tests for validation of system performance and modeling,” IEEE
Transactions on Power Systems, vol. 24, no. 1, pp. 250–257, 2009.

[38] G. Hou and V. Vittal, “Cluster computing-based trajectory sensitivity
analysis application to the wecc system,” IEEE Transactions on Power
Systems, vol. 27, no. 1, pp. 502–509, 2011.

[39] H. Cui, F. Li, and K. Tomsovic, “Hybrid symbolic-numeric framework
for power system modeling and analysis,” IEEE Transactions on Power
Systems, vol. 36, no. 2, pp. 1373–1384, 2020.

[40] T. Nishikawa and A. E. Motter, “Comparative analysis of existing mod-
els for power-grid synchronization,” New Journal of Physics, vol. 17,
no. 1, p. 015012, 2015.

[41] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. Cambridge
University Press, 2012.

APPENDIX A
PROOF OF LEMMA 2

Proof. The proof is similar to the one of [30, Lemma 14],
which bounds V (δ,ω) term by term. Firstly, using the
Rayleigh-Ritz theorem [41], the kinetic energy term,
1
2

∑n
i=1 Mi(ωi − ω∗)2, is lower bounded by 1

2λmin(M)||ω−
ω∗||22 and upper bounded by 1

2λmax(M)||ω−ω∗||22. Then,
with a direct application of [31, Lemma 4], the potential
energy term Wp(δ) in (9) can be bounded by β1 ∥δ − δ∗∥22 ≤
Wp(δ) ≤ β2 ∥δ − δ∗∥22 for some constants β1 > 0 and
β2 > 0.

To deal with the cross term Wc(δ), we define pe,i(δ) :=∑n
j=1 Bij sin(δij). Then, Wc(δ) = (pe(δ)−pe(δ

∗))
T
M(ω−

ω∗). Clearly, −|Wc(δ)| ≤Wc(δ) ≤ |Wc(δ)|. For ∀x,y ∈ Rn,
2|xTy| ≤ ||x||22 + ||y||22. Thus, we have

|Wc(δ)| ≤
1

2

(
||pe(δ)−pe(δ

∗)||22 + ||M(ω−ω∗)||22
)

≤ 1

2

(
γ2||δ−δ∗||22 + λmax(M)2||ω−ω∗||22

)
,

where the second inequality comes from [31, Lemma 4]
and the Rayleigh-Ritz theorem, with some γ2 > 0.
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Hence, the Wc(δ) term is lower bounded by

−1

2

(
γ2||δ−δ∗||22 + λmax(M)2||ω−ω∗||22

)
and upper

bounded by
1

2

(
γ2||δ−δ∗||22 + λmax(M)2||ω−ω∗||22

)
.

Finally, combining the inequalities, we can bound the entire
Lyapunov function V (δ,ω) in (8) with

α1 :=
1

2
min

(
λmin(M)− ϵλmax(M)2, 2β1 − ϵγ2

)
> 0 ,

α2 :=
1

2
max

(
λmax(M) + ϵλmax(M)2, 2β2 + ϵγ2

)
> 0 ,

for sufficiently small ϵ > 0.

APPENDIX B
PROOF OF LEMMA 3

Proof. We start by computing the partial derivatives of
V (δ,ω) with respect to each state, i.e.,

∂V

∂δi
= pe,i(δ)− pe,i(δ

∗) + ϵ

n∑
j=1,j ̸=i

Bij cos(δij)Mi(ωi − ω∗)

− ϵ

n∑
j=1,j ̸=i

Bij cos(δij)Mj(ωj − ω∗) ,

∂V

∂ωi
= Mi [ωi − ω∗ + ϵ (pe,i(δ)− pe,i(δ

∗))] .

Therefore, the time derivative of V (δ,ω), i.e., V̇ (δ,ω), is

n∑
i=1

(
∂V

∂δi
δ̇i +

∂V

∂ωi
ω̇i

)
= (pe(δ)−pe(δ

∗) + ϵH(δ)M(ω−ω∗))
T

(
ω − 1

1Tω

n

)
+[ω−ω∗+ϵ (pe(δ)−pe(δ

∗))]
T
(pm−Dω−u(ω)−pe(δ))

+ (pe(δ)−pe(δ
∗)+ϵH(δ)M(ω−ω∗))

T

(
1
1Tω

n
−1ω∗

)
︸ ︷︷ ︸

=0

−[ω−ω∗+ϵ(pe(δ)−pe(δ
∗))]

T
(pm−Dω∗−u(ω∗)−pe(δ

∗))︸ ︷︷ ︸
=0

= ϵ (H(δ)M(ω−ω∗))
T
(ω−ω∗)− (ω−ω∗)TD(ω−ω∗)

− ϵ (pe(δ)−pe(δ
∗))

T
(pe(δ)−pe(δ

∗))

− ϵ (pe(δ)−pe(δ
∗))

T
D(ω−ω∗)

− [ω−ω∗+ϵ (pe(δ)−pe(δ
∗))]

T
(u(ω)− u(ω∗)) ,

which is exactly (9). Note that the extra terms in the second
equality are added to construct a quadratic format without
affecting the the original value of V̇ (δ,ω) since pe(δ)

T1 = 0,
H(δ)T1 = 0, and pm−Dω∗−u(ω∗)−pe(δ

∗) = 0 by the
condition at the equilibrium given in (5a).

It remains to show that Q(δ) ≻ 0, which follows directly
from the fact that the Schur complement of the block ϵI in
Q(δ) is positive definite: D − ϵ

2
(H(δ)M + MH(δ)) −

ϵ
4D

2 ≻ 0 for sufficiently small ϵ.

APPENDIX C
PROOF OF THEOREM 2

Let α bound the magnitude of first derivative of r on X
. Define an equispaced grid of points on X, where β = 1

n
is the spacing between grid points along each dimension.
Corresponding to each grid interval [kβ, (k + 1)β], assign
a linear function y(x) = r(kβ) + r((k+1)β)−r(kβ)

β (x − kβ),
where y(kβ) = r(kβ) and y((k + 1)β) = r((k + 1)β). For
all x ∈ [kβ, (k + 1)β], from monotonic property, we have
r(kβ) ≤ r(x) ≤ r((k+1)β) and r(kβ) ≤ y(x) ≤ r((k+1)β).
Therefore, we can bound the approximation error by

|y(x)− r(x)| ≤ |r((k + 1)β)− r(kβ)| (20)

By mean value theorem, we know that

r((k + 1)β)− r(kβ) = β
∂r(c)

∂x
(21)

for some point c on the line segment between kβ and (k+1)β.
Given the assumptions made at the outset, |∂r(c)∂x | is bounded
by α and therefore |y(x)− r(x)| can be bounded by βα.

Further, we show that any piece-wise linear function of
y(x) = r(kβ)+ r((k+1)β)−r(kβ)

β (x−kβ) can be represented by
the proposed construction (14)(15). Without loss of generosity,
assume that y(x) is the positive part and approximated by
f+(x). Let b1i = 0, q1 = r(β) and subsequently bki = (k−1)β,∑k

j=1 q
j = r(kβ)−r((k−1)β)

β for k = 2, 3, · · · , n. Then the
construction of f+(x) through (14) is exactly the same as
y(x). Therefore, |f(x) − r(x)| can also be bounded by βα.
We take β < ϵ

α to complete the proof.

APPENDIX D
FREQUENCY MEASUREMENT

We conduct simulations to confirm that the frequency mea-
sured by the PLL on the power electronic interfaces are aligned
with the rotor angles on the synchronous generators.

Fig. 12 compares the rotor angle speed and the bus fre-
quency measurement from PLL on different selected buses.
Even though the shape of the frequency measurement alters
a bit when there is a large spike in the rotor angle speed
(shown as the blue curve), the sign of the measurement is
always the same as the rotor angle speed. Hence, the designed
controller is still the same sign with the rotor angle speed,
which guarantees that the system is asymptotically stable.
Moreover, the frequency measurement generally follows the
rotor angle speed closely and achieves the same steady-state
values.

Fig. 12. Comparison of rotor angle speed and the bus frequency measurement
from PLL.
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APPENDIX E
COMPARISON OF PV AND WTG

To validates that our approach is practical and applicable
to different types of resources, Fig. 13 compares the rotor
dynamics ω at selected buses when wind or solar are employed
as the renewable resource. After the step change in load, the
frequency behavior and the control action under the learned
RNN-Lyapunov controllers are similar for wind and solar
(with the frequency deviations with solar PV being slightly
smaller).

Fig. 14 compares the active power output from WTG/PV
and the setpoints from the control law u. All the values have
subtracted their steady state value pref , and therefore the
active power from renewables can be negative. Both power
outputs follow the power setpoints very closely. This justifies
that the dynamics of the inverter-connected resources are much
faster than the simulation time step for frequency regulation.
Although the specific model for WTG and PV are different,
we can design the same control low to adjust the active power
setpoints for primary frequency regulation.

Fig. 13. Dynamics of the frequency deviation w of (left) PV and (right)
WTG in selected buses. The frequency deviations are very similar when two
different resources are used.

(a) Active power output and setpoints from WTG

(b) Active power output and setpoints from solar PV

Fig. 14. The active power output and setpoints in selected generator buses
corresponding to (a) WTG. (b) PV. The power output follows the power
setpoint accurately with almost no delays.
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